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Abstract

Background: Mild cognitive impairment (MCI) is an intermediate stage between normal aging and dementia.
Studies on MCI progression are important for Alzheimer’s disease (AD) prevention. 18F fluoro-deoxy-glucose
positron emission tomography (FDG-PET) has been proven to be a powerful tool for measuring cerebral glucose
metabolism. In this study, we proposed a classification framework for MCI prediction with both baseline and
multiple follow-up FDG-PET scans as well as cognitive scores of 33 progressive MCI (pMCI) patients and 46 stable
MCI (sMCI) patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Method: First, PET images were normalized using the Yakushev normalization procedure and registered to the
Brainnetome Atlas (BNA). The average metabolic intensities of brain regions were defined as static features.
Dynamic features were the intensity variation between baseline and the other three time points and change ratios
with the intensity obtained at baseline considered as reference. Mini-mental State Examination (MMSE) scores and
Alzheimer’s disease Assessment Scale-Cognitive section (ADAS-cog) scores of each time point were collected as
cognitive features. And F-score was applied for feature selection. Finally, support vector machine (SVM) with radial
basis function (RBF) kernel was used for the three above features.

Results: Dynamic features showed the best classification performance in accuracy of 88.61% than static features
(accuracy of 78.48%). And the combination of cognitive features and dynamic features improved the classification
performance in specificity of 95.65% and Area Under Curve (AUC) of 0.9308.

Conclusion: Our results reported that dynamic features are more representative in longitudinal research for MCI
prediction work. And dynamic features and cognitive scores complementarily enhance the classification
performance in specificity and AUC. These findings may predict the disease course and clinical changes in
individuals with mild cognitive impairment.
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Background
Alzheimer’s disease (AD), the most common form of de-
mentia, is a progressive, irreversible and currently incur-
able neurodegenerative disease [1]. With the increasing
of aging population, the morbidity rate of AD has

significantly increased [2]. Previous studies reported that
more than 26.6 million people suffered from AD in 2006
and 1 in 85 individuals would be affected by 2050 [3].
Mild cognitive impairment (MCI) is considered a transi-
tion stage between normal aging and AD, and conver-
sion of patients with MCI occurs at an annualized rate
of 10 to 15% [4, 5]. Therefore, it is vital to predict if the
conditions of MCI patients would deteriorate and lead
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to AD within a few years, or remain stable for a long
duration [6].
Neuroimaging is a powerful tool for monitoring dis-

ease progression in dementing illness [7]. Multiple stud-
ies focused on structural atrophy [8], pathological
amyloid deposition [9] and metabolic alteration [10, 11]
to identify efficient features that can detect AD and
MCI. In the past decades, FDG-PET which measures
cerebral glucose metabolism, has been reported as an
impactful MCI biomarker [12–15]. Mosconi et al. found
that hypo-metabolism was indicative of potential MCI
progression in the inferior parietal cortex [14]. De-
creased FDG uptake was reported in posterior cingulate,
temporoparietal, and prefrontal association cortex of pa-
tients with probable AD by Herholz [12]. Meanwhile,
Chetelat et al. found converters had lower uptake in the
right temporoparietal cortex compared with non-
converters [13]. It was also reported by Ossenkoppele
et.al that FDG uptake was reduced at follow-up in the
AD group in frontal, parietal and lateral temporal lobes
[15]. In addition to FDG-PET, other modalities have
been used, including magnetic resonance imaging (MRI)
[16–20], and cerebrospinal fluid (CSF) [21–24]. Previous
studies have implemented metabolic intensity of FDG-
PET images as features, which achieved 85.1% accuracy
in classifying pMCI from sMCI at the conversion time
[25] and 72.5% accuracy when combining features in
baseline and 12 months follow-up [26]. M. Pagani
achieved sensitivity of 92% and specificity of 91% in dis-
criminating MCI from healthy controls when imple-
menting metabolic differences from FDG-PET as
dynamic features [27]. However, the classification per-
formance of MCI patients needs to be improved by con-
structing effective classification framework.
Two study types have been applied to assess AD and

MCI, including cross-sectional and longitudinal designs.
In cross-sectional studies, data for only one time point is
involved (i.e., the first screening data) [21, 28–30]. At
baseline, the number of subjects at different stages (i.e.
AD, NC and different kind of MCI) and that of different
modalities (i.e., MRI, PET, fMRI etc.) are complete. Due
to greater data availability at baseline, cross-sectional
data might benefit from higher statistical power. In lon-
gitudinal studies, data for multiple time points are col-
lected, which may provide complementary information
to single time point [18, 19, 31–34]. Indeed, longitudinal
data can reflect the variation trend, both in structure
[18, 19] and cognitive of individual features [32] con-
trasting with single time point. As MCI is a disease
evolving over time, longitudinal data may have a great
impact on its classification and detection for some le-
sions in the brain.
In this study, we attempted to identify progressive

MCI (pMCI) and stable MCI (sMCI) using longitudinal

FDG-PET data. We first parceled FDG-PET images of
each time point into 246 brain regions [35], whose aver-
age metabolic intensities were considered static features.
Two types of dynamic features were defined, including
intensity difference (D) between baseline and the other
three time points and change ratio (R) using the inten-
sity at baseline as reference. Cognitive features were the
MMSE scores and ADAS-cog scores of 4 time points.
Then all the feature vectors were stacked to form a fea-
ture matrix. F-score was used for feature selection. Fi-
nally, leave-one-out (LOO) cross-validation was
performed for classification with support vector machine
(SVM). The classification framework is shown in Fig. 1.

Methods
Alzheimer’s disease neuroimaging initiative
Data used in this article were obtained from the ADNI
database (http://adni.loni.ucla.edu). ADNI was launched
in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering
(NIBIB), the Food and Drug Administration (FDA), pri-
vate pharmaceutical companies, and non-profit organi-
zations, as a $60 million,5-years public-private
partnership. The subjects have been recruited from over
50 sites across the U.S. and Canada. The primary goal of
ADNI is to test whether serial magnetic resonance im-
aging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression
of MCI and AD. For up-to-date information, visit www.
adni-info.org.

Subjects
The general inclusion criteria for MCI are: MMSE score
between 24 and 30 (inclusive) and a Clinical Dementia
Rating (CDR) of 0.5; memory complaint; no significant
levels of impairment in other cognitive domains; essen-
tial preservation of daily living activities, and absence of
dementia. There are 400 MCI subjects with more than
one time-point in ADNI database. We selected subjects
with 4 time points (i.e. baseline, month 6, month 12 and
month 18) FDG-PET data. Patients who converted to
AD between baseline and 18month was excluded, and
those who converted to AD during 18 month to 48
month were labeled as pMCI, likewise, the patients
whose situation have not changed were labeled as sMCI.
Based on the criteria mentioned above, the study popu-
lation comprised 46 sMCI and 33 pMCI. The demo-
graphic and clinical information (MMSE) of all
participants at baseline is shown in Table 1. The 46
sMCI patients aged 62–85 at baseline (mean = 77.1; SD =
6.8) (male/female, 31/15), and 33 pMCI patients aged
55–82 at baseline (mean = 73.4; SD = 6.7) (male/female,
24/9). The two groups were relatively well-matched in
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terms of gender (χ2 = 0.2590, p = 0.6110). Statistic ana-
lysis indicated there were significant differences between
sMCI and pMCI patients in age (t = − 2.2933, p =
0.0192), and in the demographic variables MMSE (t = −
2.1036, p = 0.0387) and ADAS-cog (t = 3.7124, p = 3.86e-
04) at baseline. We implemented a linear regression to
remove the effects of age and gender.

FDG-PET data acquisition and preprocessing
All FDG-PET Data were acquired using Siemens, GE
and Philips PET scanners at resting-state. Details of the
PET pre-processing are described at http://adni.loni.usc.
edu/methods/pet-analysis/pre-processing/. First, PET
images were acquired 30–60min post-injection at a rate
of 1 frame per 5min. Then, raw PET images were proc-
essed to remove the possible differences resulting from
scanner differences. For a given subject, each frame was

Fig. 1 The classification framework. Static feature, dynamic feature, and cognitive feature extraction (a). The LOO cross-validation classification
evaluation process (b)

Table 1 Subject information

Group sMCI pMCI p-value

Number of subjects 46 33 –

Gender(M/F) 31/15 24/9 0.6110#

Baseline age (mean ± std) 77.1 ± 6.8 73.4 ± 6.7 0.0192$*

Baseline MMSE (mean ± std) 27.8 ± 1.4 27.1 ± 1.6 0.0387$*

Baseline ADAS-cog (mean ± std) 13.9 ± 5.5 18.1 ± 4.0 3.86e-04$*

pMCI progressive mild cognitive impairment, sMCI stable mild cognitive
impairment, MMSE Mini-mental State Examination, ADAS-cog Alzheimer’s
disease Assessment Scale-Cognitive section. # and $ represent p-value for chi-
square test and two-sample t-test, respectively. * indicates there are significant
differences of the corresponding demographic variables at baseline.
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coregistered to the first frame, and then all frames were
averaged to generate a single average image. The aver-
aged image was reoriented and filtered into a standard
160 × 160 × 96 voxel image grid with 1.5mm cubic vox-
els. The resulting images were smoothed with 8mm
FWHM Gaussian kernels. Finally, all images were
spatially normalized to the PET Montreal Neurological
Institute (MNI) brain space template, scaled, and aver-
aged using SPM8(Statistical Parametric Mapping 8,
http://www.fil.ion.ucl.ac.uk/spm) running under Matlab
7.11(Mathworks Inc., Sherborn, MA, USA) on the Cen-
tOS 6.5.

FDG-PET normalization
Intensity normalization of FDG-PET images is often per-
formed relative to the cerebral global mean. However,
subjects with AD have a lower metabolic intensity than
MCI across the whole brain [12, 14]. Normalization to
the cerebral global mean therefore artificially scales up
AD values while scaling down those of MCI cases.
Yakushev et al. [36] figured out this problem between
AD and normal control. Recent research proposed that
using the signal intensity in relatively preserved regions
of brain rather than the cerebral global mean value for
normalization can improve group discrimination [37].
Yakushev et al. proposed a different approach for defin-
ing a reference cluster for normalization. This method
consists of 2 steps. First, a cerebral global mean
normalization is performed. Then, a two sample t-test is
conducted in order to find the apparently hypermeta-
bolic (p-value< 0.05) regions in the patient group com-
pared to the healthy control, and these regions are then
selected as the reference cluster. In our work, intensity
normalization of the FDG-PET images was conducted
performing this reference cluster method. The detailed
information of the healthy control group was shown in
the Supplementary table 1. From our calculation, the lo-
cation of the reference clusters of different time points
mainly included Precuneus, Limbic Lobe, and Posterior
Cingulate. Visualization of the reference clusters of dif-
ferent time points was shown in Supplementary Figure
1.

Feature extraction
After preprocessing and normalization, we extracted the
voxels and performed a linear regression to remove the
effects of the age and gender. Then voxels were mapping
into 246 regions according to the BNA template pro-
posed by the Institute of Automation, Chinese Academy
of Sciences. The BNA template is based on standard
MNI space, with 210 cortical and 36 subcortical sub-
regions, and provides a fine-grained, cross-validated
atlas, containing information on both anatomical and

functional connections [35]. Average metabolic intensity
of regions were taken as static features.
Two types of dynamic features were defined, including

intensity differences (D) and the intensity change rate(R).
D is the intensity differences between baseline and the
other three time points. To obtain R values, the D values
between baseline and the remaining 3 time points were
then divided by the intensity of baseline. The calculation
formulas are as follows:

Di ¼ Tbaseline−Ti ð1Þ

Ri ¼ Di

Tbaseline
i ¼ 1; 2; 3ð Þ ð2Þ

T is the metabolic intensity of each time point. Cogni-
tive features are the MMSE and ADAS-cog scores of 4
time points.

Feature selection
To increase the classification accuracy, effective feature
selection was used for dimensionality reduction, data
minimization, redundancy minimization, and calculation
reduction. We applied F-score feature selection method,
which shows good performance on small samples. F-
score selects the most effective features by evaluating
the resolving power of the feature samples [38]. Given
training samples xk ∈ R

n, k = 1, 2, ⋯, l, and dividing the
samples into positive and negative categories, the num-
ber of positive samples is n+ while the number of nega-
tive samples is n−, then the F-score of the i-th feature is
defined as follows:

F ið Þ ¼
�x þð Þ
i −�xi

� �2
þ �x −ð Þ

i −�xi
� �2

1
nþ−1

Xnþ
k¼1

x þð Þ
k;i −�xi

þð Þ
� �2

þ 1
n−−1

Xn−

k¼1
x −ð Þ
k;i −�xi

−ð Þ
� �2

ð3Þ

xi , x
ðþÞ
i and xð−Þi are the averages of the i-th feature of

the whole, positive and negative data sets, respectively.
xþk;i is the i-th feature of the k-th positive instance, and

x−k;i is the i-th feature of the k-th negative instance. The
discriminating power of the feature is proportional to
the F value. Therefore, we can set the threshold value to
exclude the features with smaller F value, so as to
achieve the purpose of feature selection.
In addition, LASSO feature selection method [39] was

implemented to further test the stability and effective-
ness of the features.

Classification
Based on the selected features above, the commonly
used classifier SVM which is based on structural risk
minimization and exploits a margin-based criterion was
selected for classification [40, 41]. We applied LIBSVM
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library [42] on MATLAB, and the RBF kernel was uti-
lized because of its good performance on small sample
problems [43]. The RBF kernel is defined as follow:

K x1; x2ð Þ ¼ exp −
x1−x2k k2
2σ2

 !
ð4Þ

Where x1 and x2 are the two feature vectors, and σ is
the width of the Gaussian kernel. To obtain a relative
unbiased evaluation of classification performance, we ap-
plied the leave-one-out cross-validation strategy with
feature selection and classifier training only on training
set (see Fig. 1b). Specifically, one subject is first left out
as testing set, and the remaining ones are used as train-
ing set. The entire process is repeated for each sub-
ject. Accuracy, sensitivity, and specificity were
determined to evaluate the performance of the proposed
classification framework. In addition, the Receiver Oper-
ating Characteristic (ROC) curve was used to summarize
the classifier performance over a range of trade-offs be-
tween true-positive and false-positive error rates [44].
Area Under the ROC Curve (AUC) [45] was used as an-
other measure.

Results
Feature selection results
By increasing the number of features used in classifica-
tion, the optimization process of the classification results
is shown in Fig. 2. When the number of features was 37,
the static features in the 6th month after baseline
(Static_m6) obtained the best classification performance
among the static features. On the other hand, Dynamic_
1 calculated with Static_mbl and Static_m6 obtained the
best classification performance among the dynamic fea-
tures when the number of the selected features equaled
to 46. We chose the maximum point of curve of static
feature (Static_m6) and dynamic feature (Dynamic_1)
respectively. The common features selected from the
training set at each leave-one-out were mainly located at
some brain regions. We visualized these brain regions in
Fig. 3. As for Static_m6, the brain regions included cin-
gulate gyrus (average F-score = 3.85e-5), precuneus
(4.49e-5), superior parietal lobule (1.00e-4), superior
frontal gyrus (1.27e-4) of right hemisphere and precen-
tral gyrus (5.61e-6), middle temporal gyrus (4.80e-5), in-
ferior temporal gyrus (6.56e-5), precuneus (7.66e-5),
inferior parietal lobule (1.59e-4), lateral occipital cortex
(1.77e-4) of left hemisphere. As for Dynamic_1, the
brain regions mainly included precentral gyrus (3.22e-6),

Fig. 2 The optimization process of classification. The number of selected features increased from 1 to 246 as shown in x-axis. And the y-axis
represents the classification performance with static and dynamic features in different colors and markers. ACC, classification accuracy. Static_mbl,
static feature obtained in the baseline. Static_m6, static feature obtained in the 6th month after baseline. Static_m12, static feature obtained in
the 12th month after baseline. Static_m18, Static feature obtained in the 18th month after baseline. Dynamic_1, dynamic feature calculated with
Static_mbl and Static_m6. Dynamic_2, dynamic feature calculated with Static_mbl and Static_m12. Dynamic_3, dynamic feature calculated with
Static_mbl and Static_m18
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inferior frontal gyrus (5.42e-5), orbital gyrus (1.16e-4) of
right hemisphere and middle temporal gyrus (1.19e-5),
insular gyrus (1.86e-5) of left hemisphere.

Classification results
The classification performance was assessed based on
three feature sets, which were static, dynamic and cogni-
tive features. As shown in Tables 2 and 3 the perfor-
mances of average metabolic intensity and metabolic
intensity change rate were not satisfactory in classifica-
tion tasks. Static feature in baseline (Static_mbl)
achieved accuracy of 59.49%, sensitivity of 6.06% specifi-
city of 97.83% and AUC of 0.5402. Static features in the
6th month after baseline (Static_m6) achieved accuracy
of 78.48%, sensitivity of 57.58%, specificity of 93.48% and

AUC of 0.6634. Meanwhile, in the third time point (12th
month after baseline, Static_m12), static features
achieved accuracy of 73.41%, sensitivity of 48.48%, speci-
ficity of 91.30% and AUC of 0.6344. Accuracy of 70.88%,
sensitivity of 45.45%, specificity of 89.13%, and AUC of
0.5428 were obtained by implementing static features in
the 18th month after baseline (Static_m18). We also
combined all static features, but the results did not meet
expectations. The combined accuracy was lower than
Static_m6 but higher than other three time points. As
for dynamic features, the intensity change rates did not

Fig. 3 Locations of the selected regions as features overlaid on the standard template. Static_m6, static feature obtained in 6th month after
baseline. Dynamic_1, dynamic feature calculated with static feature in baseline and in the 6th month after baseline

Table 2 Comparison of the classification performance in static
features

Feature ACC(%) SEN(%) SPE(%) AUC

Static_mbl 59.49 6.06 97.83 0.5402

Static_m6 78.48 57.58 93.48 0.6634

Static_m12 73.41 48.48 91.30 0.6344

Static_m18 70.88 45.45 89.13 0.5428

Static_all 75.95 51.52 93.48 0.6614

ACC classification accuracy, SEN classification sensitivity, SPE classification
specificity, AUC Area Under Curve, Static_mbl static feature obtained in the
baseline, Static_m6 static feature obtained in the 6th month after baseline,
Static_m12 static feature obtained in the 12th month after baseline,
Static_m18 static feature obtained in the 18th month after baseline, Static_all
combining all the static features

Table 3 Comparison of the classification performance in
dynamic features

Feature ACC(%) SEN(%) SPE(%) AUC

Dynamic_1 88.61 81.82 93.48 0.9351

Dynamic_2 77.21 75.76 78.26 0.8063

Dynamic_3 82.28 73.91 93.94 0.9289

R1 60.76 6.32 100 0.8524

R2 64.56 15.22 100 0.6278

R3 64.56 54.55 71.74 0.5738

Dynamic_all 87.38 87.88 86.96 0.8959

ACC classification accuracy, SEN classification sensitivity, SPE classification
specificity. AUC Area Under Curve, Dynamic_1 dynamic feature calculated with
Static_mbl and Static_m6 in Table 2, Dynamic_2 dynamic feature calculated
with Static_mbl and Static_m12, Dynamic_3 dynamic feature calculated with
Static_mbl and Static_m18, R1 metabolic change rate in the 6th month after
baseline, R2 metabolic change rate in the 12th month after baseline, R3
metabolic change rate in the 18th month after baseline, Dynamic_all
combining all the dynamic features
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shown good classification effect, but the metabolic dif-
ferences Dynamic_1 calculated by Static_mbl and Static_
m6 got the highest accuracy of 88.61% which is better
than the static features. All the ROC curves were shown
in Fig. 4. In addition, LASSO feature selection based
classification results were shown in supplementary table
2 and supplementary table 3. Under LASSO method,
Static_m6 obtained the best classification performance
with accuracy of 75.94%, sensitivity of 60.61%, specificity
of 80.43%, and AUC of 75.96%. As for dynamic features,
Dynamic_1 achieved accuracy of 87.34%, sensitivity of
93.94%, specificity of 82.61, and AUC of 0.9302. Com-
pared with LASSO based classification results, F-score

based results showed better classification performance
both in static features and in dynamic features.
Table 4 shows the feature combination results respect-

ively. Combining static features of the 4 time points, an
accuracy of 75.95% was obtained which exceeded more
than 5% compared with single time point except M6,
and the sensitivity and specificity were also improved to
51.52 and 93.38%. Accuracy of combined dynamic fea-
tures reached 87.38%, higher than that of static features.
Cognitive features got a specificity of 93.48%.

Discussion
The present study developed a classification framework
using both cross-sectional and longitudinal FDG-PET as
well as cognitive scores to discriminate pMCI from
sMCI. We adequately considered effects from static, dy-
namic and cognitive features. All these types of features
were compared to ensure accurate relationship measure-
ment. Our findings suggested that the dynamic features
outperformed previous studies of pMCI and sMCI clas-
sification, with an accuracy of 88.61% by SVM RBF [19,
31, 46, 47].
Cerebral glucose metabolism measured by FDG-PET

is an impactful mean of MCI prediction. Metabolic in-
tensity reflects integrated synaptic activity. Decreased
metabolic intensity in a given brain region indicates ei-
ther reduced number of synapses or decreased synaptic
metabolic activity [48]. Sensitive biomarkers were se-
lected in each type of features, according to Fig. 4, as the
middle temporal lobe, cingulate gyrus, inferior frontal

Fig. 4 The ROC curves for static features and dynamic features. The ROC curves are at the best performance of classification for static features,
dynamic features and the combination of dynamic features and static features respectively

Table 4 Comparison of the classification performance in the
combination features

Feature ACC(%) SEN(%) SPE(%) AUC

Static 75.95 51.52 93.48 0.6614

Dynamic 87.38 87.88 86.96 0.8959

Cognitive 77.22 55.55 93.48 0.6414

Static & Dynamic 72.15 57.58 82.61 0.7444

Static & Cognitive 73.42 57.58 84.78 0.7345

Dynamic & Cognitive 87.34 75.76 95.65 0.9308

All 72.42 36.36 97.83 0.6443

ACC classification accuracy, SEN classification sensitivity, SPE classification
specificity, AUC Area Under Curve. Static denotes the combination of all the
static features, which is the same as Static_all in Table 2. Dynamic denotes the
combination of all the dynamic features as shown in Table 3 (Dynamic_all).
Cognitive denotes the combination of all the MMSE and ADAS-cog score
features. All denotes the combination of all the types of features
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gyrus, orbital gyrus, parahippocampal gyrus and post-
central gyrus. In previous studies, many of these selected
regions have been indicated as significant in the conver-
sion prediction for MCI patients[49–51].

Classification performance evaluation
Table 2 demonstrated that combination of all static fea-
tures yielded an accuracy of 75.95%, achieving better
performance in discriminating pMCIs from sMCIs than
any single time point except the 6th month after base-
line. In this study, result biasing random classification
was obtained at baseline. We inferred that the baseline is
too far from the disease transformation time point, with
little effect on the classification. However, at the early
stage of MCI conversion (after baseline), the classifica-
tion accuracy decreased with time. Therefore, we be-
lieved that in the early stage of MCI, the disease
deteriorated rapidly. As the disease progresses, the con-
version rate slows down. In Table 3, this speculation was
further confirmed: Dynamic_1 obtained the highest ac-
curacy and Dynamic_2, Dynamic_3 was lower. As Table
3 shown, Dynamic_all achieved a better prediction ac-
curacy than Dynamic_2, and Dynamic_3 with 10.17 and
5.10% increment respectively. But Dynamic_3 performs
better in specificity of 93.94%.
Several studies combined static and dynamic features

in MCI classification or prediction [19, 31]. Gray et al.
obtained an accuracy of 63.1% while combining longitu-
dinal changes with 12-month FDG-PET signal inten-
sities, with 58.4 and 62.3% for baseline and 12-month
signal intensities [31]. Thung et al. combined baseline
and 18-month MRI volumetric and dynamic features,
and achieved an accuracy of 78.2%, which is 6.6% higher
than when using only the reference time point [19]. As
shown in Table 4, combination of all the dynamic fea-
tures achieved the better classification accuracy of
87.38% than the other feature combinations. On the one
hand, combining dynamic features and static features
did not get a better classification accuracy. But the sensi-
tivity (57.58%) and the AUC (0.7444) was improved
compared with the combination of static features (sensi-
tivity of 51.52% and AUC of 0.6614). On the other hand,
combining dynamic features and cognitive features
achieved better classification performance (accuracy of
87.34%, sensitivity of 75.76%, specificity of 95.65% and
AUC of 0.9308) than the combination of cognitive fea-
tures (accuracy of 77.22%, sensitivity of 55.55%, specifi-
city of 93.48% and AUC of 0.6414). The present results
indicated that the dynamic features can provide some
complementary information which can enhance classifi-
cation performance in conjunction with the static fea-
tures and cognitive features respectively. Additionally,
compared with all the static (sensitivity of 51.52% and
AUC of 0.6614) and all the cognitive features (sensitivity

of 55.55% and AUC of 0.6414), classification perform-
ance was improved in sensitivity of 57.58% and AUC of
0.7345 with the combination of static features and cog-
nitive features. This above result showed that static fea-
tures and cognitive features assistant to each other when
predicting pMCIs from sMCIs. When applying all the
dynamic, static and cognitive features, classification per-
formance in specificity was improved to 97.83%.
However, it should be noted that the combination of

all the features performs worse than some specific com-
binations. On the one hand, this maybe suffered from
the limitations of F-score feature selection method. A
disadvantage of F-score is that it does not consider mu-
tual information among features [38]. Despite F-score
showed effectiveness on dynamic features, F-score might
lack ability in selecting features with complementary in-
formation from different feature sets, as static features
and cognitive features. On the other hand, the poor per-
formance of the feature combination may due to the
over determination or lack of convergence of SVM
classifier.
Multiple studies also examined the contribution of

cognitive scores [32, 52]. For instance, Cui et al. used
different modalities of data, including neuropsycho-
logical and functional measures, to explore the optimal
set of predictors of conversion from MCI to AD, and ob-
tained an accuracy of 67.13% [52]. Zhang et al. reported
that the combination of cognitive scores (MMSE and
ADAS-cog) can improve the accuracy, sensitivity, and
specificity in distinguishing MCI and AD [32]. In the
current study, the combination of MMSE and ADAS-
cog scores of 4 time points resulted in lower accuracy of
77.22% and higher specificity of 93.48%. And the com-
bination of cognitive features and static features showed
in Table 4 got higher sensitivity of 57.58% and AUC of
0.7345. Also, the combination of cognitive features and
dynamic features showed in Table 4 achieved better spe-
cificity of 95.65% and AUC of 0.9308.
As shown above, the 88.61% classification accuracy

was achieved while using the dynamic features in Dy-
namic_1 (Table 3). Sensitivity (87.88%, in Table 4) im-
proved by dynamic features and specificity (95.65%, in
Table 4) increased by cognitive features strongly contrib-
uted to the remarkable results obtained, suggesting that
longitudinal data and cognitive scores complementarily
enhance the classification performance.

Methodological limitations
The limitations of this study should be mentioned. First,
the combination of multimodal data has been shown to
improve the classification results in multiple studies [28,
32, 47, 52, 53]. Other modality data also have different
sensitive biomarkers which are complementary in en-
hancing discrimination performance. In addition, more
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effective dynamic feature computing methods need to be
proposed in the future study.

Conclusions
Our study suggested that dynamic features got the best
classification accuracy than the static features and fea-
tures of cognitive scores in discriminating pMCIs from
sMCIs. And dynamic features and cognitive scores com-
plementarily enhance the classification performance in
sensitivity and specificity. Furthermore, the brain regions
related to the selected dynamic features might suggest
the different progression patterns between pMCIs and
sMCIs.
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